Preparation of electrospun heterostructured hollow SnO/CuO nanofibers and their enhanced visible light photocatalytic performance
Journal of Solid State Electrochemistry, ISSN: 1432-8488, Vol: 22, Issue: 8, Page: 2413-2423
2018
- 23Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Heterostructured SnO/CuO nanofibers with a hollow morphology were successfully fabricated by a one-step electrospinning method. The electrospun nanofibers were transformed into hollow nanostructures in the presence of camphene after a calcination process, and the obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflection spectroscopy (DRS), photoluminescence spectra (PL), and photodegradation measurements. The scanning electron microscopy (SEM) images displayed a rough and hollow structure for the obtained nanofibers. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) identified the molecular composition and chemical interactions of the nanofibers. Photoluminescent (PL) measurements indicated that a recombination of the photoinduced electrons and holes was further inhibited due to the hollow nanostructure. Furthermore, the photodegradation of methylene blue suggested that the heterostructured SnO/CuO hollow nanofibers possessed higher charge separation and photodegradation abilities than those of the other samples under visible light irradiation. This work can be potentially applied to the fabrication of other inorganic oxide photocatalysts with enhanced photodegradation activity in the field of environmental remediation.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know