Bimetallic MOF-derived manganese-cobalt composite oxide as high-performance zinc-ion batteries cathode
Journal of Solid State Electrochemistry, ISSN: 1433-0768, Vol: 29, Issue: 1, Page: 239-248
2025
- 1Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The designing cathode materials of aqueous zinc-ion batteries (AZIBs) with high performance is significant challenges in the development of AZIBs. Metal–organic frameworks (MOFs) are considered prime candidates for cathode modification and high-performance cathode materials. Herein, a two-step hydrothermal method was employed to fabricate a bimetallic metal–organic framework MnCo-MOF on carbon cloth. The resulting precursor was calcined to produce a cathode composite MnCoO. As a cathode for AZIBs, MnCoO/CC exhibited an average specific capacity of 280.6 mAh/g. Upon completion of the cycle at a current density of 0.2 A/g, the specific capacity measured 275.1 mAh/g (retaining 98% of its initial capacity), while maintaining a coulombic efficiency of approximately 98.5%. The excellent cycling performance, superior specific capacity, and superb coulombic efficiency are ascribed to the concerted influence of the polymetallic ions. The micro and nano scale interconnected block structure of MnCoO facilitates interaction between electrode substance and the electrolyte. This research broadens the selection of cathode material and offers valuable guidance for designing high-performance cathode materials for AZIBs.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know