Subsurface Soil Carbon and Nitrogen Losses Offset Surface Carbon Accumulation in Abandoned Agricultural Fields
Ecosystems, ISSN: 1435-0629, Vol: 26, Issue: 4, Page: 924-935
2023
- 3Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abandoned agricultural fields (old fields) are thought to accumulate soil organic matter (SOM) after cultivation cessation. However, most research on old fields soil carbon (C) and nitrogen (N) sequestration has focused on the surface (10 or 30 cm depth) and overlooked their dynamics below 30 cm. This study quantified C and N stock change in both the surface and subsurface with repeated inventories over 13 years. We conducted repeated soil surveys in 8 old fields that form a 64-year chronosequence at Cedar Creek Ecosystem Science Reserve (CCESR), Minnesota in 2001 and 2014. On average, soil C and N accumulated by 16.5 ± 14.5 g C m y and 1.0 ± 1.1 g N m y in the surface (0–20 cm). In contrast, we found soil C and N decreased by 78.9 ± 26.3 g C m y and 12.9 ± 2.42 g N m y in the subsurface (20–100 cm). The C and N losses in the subsurface soil were correlated with low deep root biomass; the majority of roots are located in the top 20 cm of soil. Such root distribution may be attributed to the continuing dominance of nonnative and shallow-rooted C3 grasses and the lack of legumes after field abandonment. This study shows that agriculture has a long legacy effect after abandonment on subsurface soil C and N. Some abandoned agricultural fields can continue to lose C and N because surface C and N accumulation does not offset the ongoing deeper soil C and N losses.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know