Fast affinity propagation clustering based on incomplete similarity matrix
Knowledge and Information Systems, ISSN: 0219-3116, Vol: 51, Issue: 3, Page: 941-963
2017
- 33Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Affinity propagation (AP) is a recently proposed clustering algorithm, which has been successful used in a lot of practical problems. Although effective in finding meaningful clustering solutions, a key disadvantage of AP is its efficiency, which has become the bottleneck when applying AP for large-scale problems. In the literature, most of the methods proposed to improve the efficiency of AP are based on implementing the message-passing on a sparse similarity matrix, while neither the decline in effectiveness nor the improvement in efficiency is theoretically analyzed. In this paper, we propose a two-stage fast affinity propagation (FastAP) algorithm. Different from previous work, the scale of the similarity matrix is first compressed by selecting only potential exemplars, then further reduced by sparseness according to k nearest neighbors. More importantly, we provide theoretical analysis, based on which the improvement of efficiency in our method is controllable with guaranteed clustering performance. In experiments, two synthetic data sets, seven publicly available data sets, and two real-world streaming data sets are used to evaluate the proposed method. The results demonstrate that FastAP can achieve comparable clustering performances with the original AP algorithm, while the computational efficiency has been improved with a several-fold speed-up on small data sets and a dozens-of-fold on larger-scale data sets.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84988737024&origin=inward; http://dx.doi.org/10.1007/s10115-016-0996-y; http://link.springer.com/10.1007/s10115-016-0996-y; http://link.springer.com/content/pdf/10.1007/s10115-016-0996-y.pdf; http://link.springer.com/article/10.1007/s10115-016-0996-y/fulltext.html; https://dx.doi.org/10.1007/s10115-016-0996-y; https://link.springer.com/article/10.1007/s10115-016-0996-y
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know