Multiscale Laplacian graph kernel combined with lexico-syntactic patterns for biomedical event extraction from literature
Knowledge and Information Systems, ISSN: 0219-3116, Vol: 63, Issue: 1, Page: 143-173
2021
- 12Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Bio-event extraction is an extensive research area in the field of biomedical text mining, this focuses on elaborating relationships between biomolecules and can provide various aspects of their nature. Bio-event extraction plays a vital role in biomedical literature mining applications such as biological network construction, pathway curation, and drug repurposing. Extracting biological events automatically is a difficult task because of the uncertainty and assortment of natural language processing such as negations and speculations, which provides further room for the development of feasible methodologies. This paper presents a hybrid approach that integrates an ensemble-learning framework by combining a Multiscale Laplacian Graph kernel and a feature-based linear kernel, using a pattern-matching engine to identify biomedical events with arguments. This graph-based kernel not only captures the topological relationships between the individual event nodes but also identifies the associations among the subgraphs for complex events. In addition, the lexico-syntactic patterns were used to automatically discover the semantic role of each word in the sentence. For performance evaluation, we used the gold standard corpora, namely BioNLP-ST (2009, 2011, and 2013) and GENIA-MK. Experimental results show that our approach achieved better performance than other state-of-the-art systems.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85093945449&origin=inward; http://dx.doi.org/10.1007/s10115-020-01514-8; https://link.springer.com/10.1007/s10115-020-01514-8; https://link.springer.com/content/pdf/10.1007/s10115-020-01514-8.pdf; https://link.springer.com/article/10.1007/s10115-020-01514-8/fulltext.html; https://dx.doi.org/10.1007/s10115-020-01514-8; https://link.springer.com/article/10.1007/s10115-020-01514-8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know