Random walk on node cliques for high-quality samples to estimate large graphs with high accuracies and low costs
Knowledge and Information Systems, ISSN: 0219-3116, Vol: 64, Issue: 7, Page: 1909-1935
2022
- 3Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Random-walk-based sampling is an efficient way to extract and analyze the properties of large and complex graphs representing social networks. However, it is almost impractical for existing random-walk-based sampling schemes to reach the desired node distribution because of the indeterministic sampling budget (i.e., the number of samples or sampling steps) required for doing so with large volumes of data in graphs. On the other hand, under a small sampling budget, these methods produce low-quality samples with many repeats and high correlations (i.e., many common attributes), which leads to a large deviation from the desired node distribution and large estimation errors. In this paper, we propose a new random-walk sampling scheme based on node cliques (a subset of cliques), called node-clique random walk, or NCRW, to strike a good balance between the estimation error and the sampling budget, by producing unique samples with low correlations. Meanwhile, both the deviation from the desired node distribution and the estimation errors under the constraint of the sampling budget are reduced both theoretically and experimentally. Thus, the sampling costs which are closely related to the sampling budget are reduced. Our extensive experimental evaluation driven by real-world datasets further confirms that NCRW significantly increases the quality of samples and accuracy of estimations with much lower costs than those of existing random-walk-based sampling schemes especially in estimating the higher-order node attributes.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know