Adapter-based fine-tuning of pre-trained multilingual language models for code-mixed and code-switched text classification
Knowledge and Information Systems, ISSN: 0219-3116, Vol: 64, Issue: 7, Page: 1937-1966
2022
- 14Citations
- 41Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Code-mixing and code-switching are frequent features in online conversations. Classification of such text is challenging if one of the languages is low-resourced. Fine-tuning pre-trained multilingual language models is a promising avenue for code-mixed text classification. In this paper, we explore adapter-based fine-tuning of PMLMs for CMCS text classification. We introduce sequential and parallel stacking of adapters, continuous fine-tuning of adapters, and training adapters without freezing the original model as novel techniques with respect to single-task CMCS text classification. We also present a newly annotated dataset for the classification of Sinhala–English code-mixed and code-switched text data, where Sinhala is a low-resourced language. Our dataset of 10000 user comments has been manually annotated for five classification tasks: sentiment analysis, humor detection, hate speech detection, language identification, and aspect identification, thus making it the first publicly available Sinhala–English CMCS dataset with the largest number of task annotation types. In addition to this dataset, we also tested our proposed techniques on Kannada–English and Hindi–English datasets. These experiments confirm that our adapter-based PMLM fine-tuning techniques outperform or are on par with the basic fine-tuning of PMLM models.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know