Bacterial Lipid Modification of ICP11 and a New ELISA System Applicable for WSSV Infection Detection
Marine Biotechnology, ISSN: 1436-2236, Vol: 20, Issue: 3, Page: 375-384
2018
- 8Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- Captures13
- Readers13
- 13
Article Description
In ELISA, a popular analytical diagnostic tool, the stable non-covalent immobilization (coating) of hydrophilic proteins/peptides on to hydrophobic polystyrene surface has remained a major common challenge. Recombinant bacterial lipid modification of proteins in Escherichia coli system has been shown in this study to solve this problem owing to the hydrophobic anchorage provided by three fatty acyl groups in N-acyl-S-diacylglyceryl Cys at the N-terminus. Exploiting this first post-translational protein engineering, the most abundantly expressed white spot syndrome viral protein ICP11 was lipid-modified and tested as a new target in a new ELISA method useful to shrimp farming. The lipid served as a potent adjuvant to enhance the titer (16 times) of higher affinity antibodies where amino terminal lipoamino acid N-acyl-S-diacylglyceryl cysteine of bacterial lipoproteins induce inflammatory responses through TLR and stimulate humoral immune responses without additional adjuvant and also aided in the immobilization of even a few nanograms of ICP11. Competition between the immobilized and the free antigen from the sample provided a sensitive measure of antigen in the infected shrimp tissues. The detection limit for ICP11 protein using competitive ELISA was 250 pg and the linear range of the assay was 15–240 ng.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85045285388&origin=inward; http://dx.doi.org/10.1007/s10126-018-9815-7; http://www.ncbi.nlm.nih.gov/pubmed/29656308; http://link.springer.com/10.1007/s10126-018-9815-7; https://dx.doi.org/10.1007/s10126-018-9815-7; https://link.springer.com/article/10.1007%2Fs10126-018-9815-7
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know