Bioconversion of lawn waste amended with kitchen waste and buffalo dung in to value-added vermicompost using Eisenia foetida to alleviate landfill burden
Journal of Material Cycles and Waste Management, ISSN: 1611-8227, Vol: 23, Issue: 1, Page: 358-370
2021
- 12Citations
- 36Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Enormous quantities of waste such as lawn waste (LW) and kitchen waste (KW) are generated in urban institutes, proper management of which is crucial. The present work was designed to bio-convert LW and KW amended with buffalo dung (BD) into humus-rich manures through composting and vermicomposting technology over a period of 3 months. At the termination of vermicomposting process, there was significant decline from initial value in certain parameters like pH (8.17–6.74), total organic carbon (36.12–28.04) and C:N (39–16), whereas increase was observed in parameters like electrical conductivity (1.19–3.22), N (1.35–1.89%), P (0.18–0.44%), K (0.78–1.06%). Concentration of toxic heavy metals (Co, Cd, Cu, As, Cr, and Pb) declined significantly in the end product. Fecundity of earthworms was favored more by higher proportion of BD, moderate KW, and 10% LW in the feedstock, and was maximum in the combination (BD60% + LW10% + KW30%) followed by (BD50% + LW0% + 50%), (BD40% + LW20% + KW40%) and (BD30% + LW20% + KW40%). Enzymatic activities such as urease, phosphatase, and dehydrogenase were found to be high initially, but declined towards maturity of the vermicompost. The study shows that buffalo dung, kitchen waste, lawn waste (6:1:3 ratio) give best quality vermicompost.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85090475104&origin=inward; http://dx.doi.org/10.1007/s10163-020-01101-7; https://link.springer.com/10.1007/s10163-020-01101-7; https://link.springer.com/content/pdf/10.1007/s10163-020-01101-7.pdf; https://link.springer.com/article/10.1007/s10163-020-01101-7/fulltext.html; https://dx.doi.org/10.1007/s10163-020-01101-7; https://link.springer.com/article/10.1007/s10163-020-01101-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know