PlumX Metrics
Embed PlumX Metrics

Hierarchical disjoint principal component analysis

AStA Advances in Statistical Analysis, ISSN: 1863-818X, Vol: 107, Issue: 3, Page: 537-574
2023
  • 1
    Citations
  • 0
    Usage
  • 8
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Dimension reduction, by means of Principal Component Analysis (PCA), is often employed to obtain a reduced set of components preserving the largest possible part of the total variance of the observed variables. Several methodologies have been proposed either to improve the interpretation of PCA results (e.g., by means of orthogonal, oblique rotations, shrinkage methods), or to model oblique components or factors with a hierarchical structure, such as in Bi-factor and High-Order Factor analyses. In this paper, we propose a new methodology, called Hierarchical Disjoint Principal Component Analysis (HierDPCA), that aims at building a hierarchy of disjoint principal components of maximum variance associated with disjoint groups of observed variables, from Q up to a unique, general one. HierDPCA also allows choosing the type of the relationship among disjoint principal components of two sequential levels, from the lowest upwards, by testing the component correlation per level and changing from a reflective to a formative approach when this correlation turns out to be not statistically significant. The methodology is formulated in a semi-parametric least-squares framework and a coordinate descent algorithm is proposed to estimate the model parameters. A simulation study and two real applications are illustrated to highlight the empirical properties of the proposed methodology.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know