Combination of artificial neural network and clustering techniques for predicting phytoplankton biomass of Lake Poyang, China
Limnology, ISSN: 1439-8621, Vol: 16, Issue: 3, Page: 179-191
2015
- 23Citations
- 31Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A single artificial neural network (ANN) model is inadequate for predicting phytoplankton biomass in a large lake due to its high spatial heterogeneity. In this study, ANN was combined with a clustering technique to simulate phytoplankton biomass in a large lake (Lake Poyang) using a 7-year dataset. Two ANN models (named ANN_Downstream and ANN_Upstream) were developed for the downstream and upstream areas based on the k-means clustering results of 17 sampling sites at Lake Poyang, China. They performed better than ANN_Poyang (an ANN model for the whole lake), indicating the success of the clustering technique in improving ANN models for predicting phytoplankton biomass in different sub-regions of the large lake. A sensitivity analysis based on ANN_Downstream and ANN_Upstream showed that phytoplankton dynamics responded differently to environmental variables in different sub-regions of Lake Poyang. This case study demonstrated the good performance of ANN models in describing phytoplankton dynamics, and the potential of coupling ANN with a clustering technique to describe the spatial heterogeneity of natural ecosystems.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know