Prediction of Non-small Cell Lung Cancer Histology by a Deep Ensemble of Convolutional and Bidirectional Recurrent Neural Network
Journal of Digital Imaging, ISSN: 1618-727X, Vol: 33, Issue: 4, Page: 895-902
2020
- 23Citations
- 44Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations23
- Citation Indexes23
- 23
- Captures44
- Readers44
- 44
Article Description
Histology subtype prediction is a major task for grading non-small cell lung cancer (NSCLC) tumors. Invasive methods such as biopsy often lack in tumor sample, and as a result radiologists or oncologists find it difficult to detect proper histology of NSCLC tumors. The non-invasive methods such as machine learning may play a useful role to predict NSCLC histology by using medical image biomarkers. Few attempts have so far been made to predict NSCLC histology by considering all the major subtypes. The present study aimed to develop a more accurate deep learning model by clubbing convolutional and bidirectional recurrent neural networks. The NSCLC Radiogenomics dataset having 211 subjects was used in the study. Ten best models found during experimentation were averaged to form an ensemble. The model ensemble was executed with 10-fold repeated stratified cross-validation, and the results got were tested with metrics like accuracy, recall, precision, F1-score, Cohen’s kappa, and ROC-AUC score. The accuracy of the ensemble model showed considerable improvement over the best model found with the single model. The proposed model may help significantly in the automated prognosis of NSCLC and other types of cancers.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85084128248&origin=inward; http://dx.doi.org/10.1007/s10278-020-00337-x; http://www.ncbi.nlm.nih.gov/pubmed/32333132; https://link.springer.com/10.1007/s10278-020-00337-x; https://dx.doi.org/10.1007/s10278-020-00337-x; https://link.springer.com/article/10.1007/s10278-020-00337-x
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know