An AI-Based Low-Risk Lung Health Image Visualization Framework Using LR-ULDCT.
Journal of imaging informatics in medicine, ISSN: 2948-2933, Vol: 37, Issue: 5, Page: 2047-2062
2024
- 1Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
- Captures6
- Readers6
Article Description
In this article, we propose an AI-based low-risk visualization framework for lung health monitoring using low-resolution ultra-low-dose CT (LR-ULDCT). We present a novel deep cascade processing workflow to achieve diagnostic visualization on LR-ULDCT (<0.3 mSv) at par high-resolution CT (HRCT) of 100 mSV radiation technology. To this end, we build a low-risk and affordable deep cascade network comprising three sequential deep processes: restoration, super-resolution (SR), and segmentation. Given degraded LR-ULDCT, the first novel network unsupervisedly learns restoration function from augmenting patch-based dictionaries and residuals. The restored version is then super-resolved (SR) for target (sensor) resolution. Here, we combine perceptual and adversarial losses in novel GAN to establish the closeness between probability distributions of generated SR-ULDCT and restored LR-ULDCT. Thus SR-ULDCT is presented to the segmentation network that first separates the chest portion from SR-ULDCT followed by lobe-wise colorization. Finally, we extract five lobes to account for the presence of ground glass opacity (GGO) in the lung. Hence, our AI-based system provides low-risk visualization of input degraded LR-ULDCT to various stages, i.e., restored LR-ULDCT, restored SR-ULDCT, and segmented SR-ULDCT, and achieves diagnostic power of HRCT. We perform case studies by experimenting on real datasets of COVID-19, pneumonia, and pulmonary edema/congestion while comparing our results with state-of-the-art. Ablation experiments are conducted for better visualizing different operating pipelines. Finally, we present a verification report by fourteen (14) experienced radiologists and pulmonologists.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know