Degradation of hazardous organic dyes in water by nanomaterials
Environmental Chemistry Letters, ISSN: 1610-3661, Vol: 15, Issue: 4, Page: 623-642
2017
- 285Citations
- 396Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
There is about 700,000 tonnes of dyes, of more than 10,000 types, that are used as coloring agents in industries, mainly for textile. The release of dyes in natural media is of concern due to their high persistence, toxicity and potential to the bioaccumulate in living organisms. In particular, the most commercialized and carcinogenic azo dyes, that pocess a benzidine function, needs urgent attention. Here, we review the current status of cationic and anionic dyes. We present dye removal techniques using nanoparticles through adsorption and degradation. Among dye removal techniques, adsorption was found the most efficient and cheap. For that, conventional adsorbents such as commercial activated carbon, chitosan and natural waste are often employed. We discuss the use of ZnO, TiO and Fe to remove dye pollution.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know