Preparation of Molecularly Imprinted Adsorbents with Improved Retention Capability of Polyphenols and Their Application in Continuous Separation Processes
Chromatographia, ISSN: 1612-1112, Vol: 82, Issue: 6, Page: 893-916
2019
- 15Citations
- 29Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This research explores the use of molecularly imprinted polymers (MIPs) in continuous adsorption processes to target polyphenols present in plant extracts. Different kinds of MIPs were prepared and tested in individual and competitive adsorption/desorption assays. High polyphenol retention was shown to be possible, even when solvents of low water content are used. A lower impact of hydrophobic interactions is observed with MIPs, namely in comparison with commercial synthetic resins, and so, despite the absence of a perfect selectivity, molecular imprinting was congenial in the functionalization and improved binding site accessibility. Moreover, the potential usefulness of the prepared MIPs to improve downstream processing of polyphenols is also demonstrated through their application in chromatographic separation processes. The direct use of plant extracts of high alcoholic content, avoiding the need for solvent change and water addition, the suppression of energetic costs associated to water evaporation and the possibility to work in a wide range of polyphenols solubility are possible advantages of the developed MIP adsorbents in such kinds of biorefining processes. The development of simulation tools to aid the design and optimization of the involved continuous adsorption/desorption is also here addressed. In this work, MIPs were tested with cork and chestnut shell extracts, a supercritical CO olive leaf extract and red wine. Results here obtained show the successful isolation of ellagic acid with cork and chestnut shell extracts, oleuropein with the olive leaf extract and the clear simplification of the red wine extract, enabling the identification/quantification of resveratrol, quercetin, kaempferol and other polyphenols.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85065440890&origin=inward; http://dx.doi.org/10.1007/s10337-019-03728-7; http://link.springer.com/10.1007/s10337-019-03728-7; http://link.springer.com/content/pdf/10.1007/s10337-019-03728-7.pdf; http://link.springer.com/article/10.1007/s10337-019-03728-7/fulltext.html; https://dx.doi.org/10.1007/s10337-019-03728-7; https://link.springer.com/article/10.1007/s10337-019-03728-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know