Erosion-corrosion synergism in an alumina/sea water nanofluid
Microfluidics and Nanofluidics, ISSN: 1613-4990, Vol: 17, Issue: 1, Page: 225-232
2014
- 24Citations
- 35Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Since nanofluids increase the thermal conductivity of a fluid mixture compared with the base fluid, it is important to investigate any damaging effects caused by the presence of the solid particles. Thus, this paper explores the nanofluid synergistic effects produced by the addition of 1 g dm AlO nanoparticles to sea water and compares the performance with the base fluid without nanoparticles. Studies are conducted on carbon steel, using a hydrodynamically smooth-rotating cylinder electrode in turbulent flow at 298 K. The pure corrosion rate and erosion rate of carbon steel in the fluids free of nanoparticles are, respectively, higher (up to 82 %) and lower (ca. 11 %) than in the nanofluids. The synergistic effect of erosion and corrosion in a nanofluid is much higher (up to 237 %) than in the base fluid. These results indicate that the presence of nanoparticles in a flowing fluid could lead to considerable rates of material loss. © 2013 Springer-Verlag Berlin Heidelberg.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84904728513&origin=inward; http://dx.doi.org/10.1007/s10404-013-1282-x; http://link.springer.com/10.1007/s10404-013-1282-x; http://link.springer.com/content/pdf/10.1007/s10404-013-1282-x; http://link.springer.com/content/pdf/10.1007/s10404-013-1282-x.pdf; http://link.springer.com/article/10.1007/s10404-013-1282-x/fulltext.html; https://dx.doi.org/10.1007/s10404-013-1282-x; https://link.springer.com/article/10.1007/s10404-013-1282-x
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know