PlumX Metrics
Embed PlumX Metrics

Optimal micropattern dimensions enhance neurite outgrowth rates, lengths, and orientations

Annals of Biomedical Engineering, ISSN: 0090-6964, Vol: 35, Issue: 10, Page: 1812-1820
2007
  • 58
    Citations
  • 0
    Usage
  • 65
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Micropattern dimensions can significantly influence neurite outgrowth orientation, rate, and length. Laminin micropatterns of various widths from 10 to 50 μm at 10 μm intervals separated by 40 μm spaces were generated on poly(methyl methacrylate) surfaces using microscale plasma-initiated patterning (μPIP). Dissociated dorsal root ganglion (DRG) neurons were seeded on the micropatterned surfaces and cultured for 24 h in serum-free media. Neurite outgrowth numbers, lengths, rates, and orientations were measured on all micropatterned substrates. The results indicated that the dimension of the laminin pattern influenced the neurite outgrowth length, rate, and orientation, but not the numbers of neurite outgrowth. Neurons on more than 30 μm wide laminin pattern showed faster neurite outgrowth compared to other dimensions, and relatively low orientation at 50 μm pattern dimensions. Neurites at 40 μm laminin pattern widths demonstrated the fastest outgrowth rates and were highly oriented. The 40 μm laminin dimension is wide enough to provide sufficient laminin amounts for neuron growth and narrow enough to efficiently guide neurites. Based on these results, adhesive protein micropatterns of 40 μm dimensions are recommended when investigating DRG neurons. © 2007 Biomedical Engineering Society.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know