Effects of a Bioactive SPPEPS Peptide on Chondrogenic Differentiation of Mesenchymal Stem Cells
Annals of Biomedical Engineering, ISSN: 1573-9686, Vol: 47, Issue: 11, Page: 2308-2321
2019
- 11Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- Captures15
- Readers15
- 15
Article Description
A synthetic ‘chondroinductive’ biomaterial that could induce chondrogenesis without the need for growth factors, extracellular matrix, or pre-seeded cells could revolutionize orthopedic regenerative medicine. The objective of the current study was thus to introduce a synthetic SPPEPS peptide and evaluate its ability to induce chondrogenic differentiation. In the current study, dissolving a synthetic chondroinductive peptide candidate (100 ng/mL SPPEPS) in the culture medium of rat bone marrow-derived mesenchymal stem cells (rBMSCs) elevated collagen type II gene expression compared to the negative control (no growth factor or peptide in the cell culture medium) after 3 days. In addition, proteomic analyses indicated similarities in pathways and protein profiles between the positive control (10 ng/mL TGF-β) and peptide group (100 ng/mL SPPEPS), affirming the potential of the peptide for chondroinductivity. Incorporating the SPPEPS peptide in combination with the RGD peptide in pentenoate-functionalized hyaluronic acid (PHA) hydrogels elevated the collagen type II gene expression of the rBMSCs cultured on top of the hydrogels compared to using either peptide alone. The evidence suggests that SPPEPS may be a chondroinductive peptide, which may be enhanced in combination with an adhesion peptide.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85067682984&origin=inward; http://dx.doi.org/10.1007/s10439-019-02306-0; http://www.ncbi.nlm.nih.gov/pubmed/31218487; http://link.springer.com/10.1007/s10439-019-02306-0; https://dx.doi.org/10.1007/s10439-019-02306-0; https://link.springer.com/article/10.1007/s10439-019-02306-0
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know