Biodegradable and Biocompatible 3D Constructs for Dental Applications: Manufacturing Options and Perspectives
Annals of Biomedical Engineering, ISSN: 1573-9686, Vol: 49, Issue: 9, Page: 2030-2056
2021
- 28Citations
- 63Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations28
- Citation Indexes28
- 28
- CrossRef19
- Captures63
- Readers63
- 63
- Mentions1
- References1
- Wikipedia1
Review Description
Designing 3D constructs with appropriate materials and structural frameworks for complex dental restorative/regenerative procedures has always remained a multi-criteria optimization challenge. In this regard, 3D printing has long been known to be a potent tool for various tissue regenerative applications, however, the preparation of biocompatible, biodegradable, and stable inks is yet to be explored and revolutionized for overall performance improvisation. The review reports the currently employed manufacturing processes for the development of engineered self-supporting, easily processable, and cost-effective 3D constructs with target-specific tuneable mechanics, bioactivity, and degradability aspects in the oral cavity for their potential use in numerous dental applications ranging from soft pulp tissues to hard alveolar bone tissues. A hybrid synergistic approach, comprising of development of multi-layered, structurally stable, composite building blocks with desired physicomechanical performance and bioactivity presents an optimal solution to circumvent the major limitations and develop new-age advanced dental restorations and implants. Further, the review summarizes some manufacturing perspectives which may inspire the readers to design appropriate structures for clinical trials so as to pave the way for their routine applications in dentistry in the near future.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85111384161&origin=inward; http://dx.doi.org/10.1007/s10439-021-02839-3; http://www.ncbi.nlm.nih.gov/pubmed/34318403; https://link.springer.com/10.1007/s10439-021-02839-3; https://dx.doi.org/10.1007/s10439-021-02839-3; https://link.springer.com/article/10.1007/s10439-021-02839-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know