Combining IR imaging, chlorophyll fluorescence and phenomic approach for assessing diurnal canopy temperature dynamics and desiccation stress management in Azadirachta indica and Terminalia mantaly
Agroforestry Systems, ISSN: 1572-9680, Vol: 94, Issue: 3, Page: 941-951
2020
- 6Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Infrared (IR) imaging, chlorophyll fluorescence imaging and plant phenomic approach were used to study physiological mechanism of desiccation tolerance in Azadirachta indica and Terminalia mantaly during the period of November 2018 to February 2019. IR imaging instrument was installed in the field for monitoring the canopy temperature dynamics of different canopy level including stem region of the tree throughout the day. Maximum photochemical efficiency (F/F) was measured with chlorophyll fluorescence measuring system for sun exposed leaves of A. indica and T. mantaly over a period of desiccation. In order to reveal complete understanding of physiological mechanism of desiccation tolerance, plant phenomic approach was used for assessing response of these tree species to exposed desiccation. Results indicated that canopy temperature of upper foliage, lower foliage, stem (trunk) region of A. indica were quite higher during the hotter period of the day as compared to T. mantaly and maximum photochemical efficiency (F/F) was maintained in A. indica leaves as compared to T. mantaly for same exposed duration of desiccation. Plant phenomic approach also depicted that A. indica twig retained more tissue water and maintained canopy volume area higher than T. mantaly. Thus it provides an indication that A. indica tree is quite desiccation tolerant than T. mantaly by maintaining its canopy temperature, maximum photochemical efficiency, more tissue water and canopy area.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know