Interactively shaping robot behaviour with unlabeled human instructions
Autonomous Agents and Multi-Agent Systems, ISSN: 1573-7454, Vol: 34, Issue: 2
2020
- 11Citations
- 37Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, we propose a framework that enables a human teacher to shape a robot behaviour by interactively providing it with unlabeled instructions. We ground the meaning of instruction signals in the task-learning process, and use them simultaneously for guiding the latter. We implement our framework as a modular architecture, named TICS (Task-Instruction-Contingency-Shaping) that combines different information sources: a predefined reward function, human evaluative feedback and unlabeled instructions. This approach provides a novel perspective for robotic task learning that lies between Reinforcement Learning and Supervised Learning paradigms. We evaluate our framework both in simulation and with a real robot. The experimental results demonstrate the effectiveness of our framework in accelerating the task-learning process and in reducing the number of required teaching signals.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know