Controller synthesis for linear temporal logic and steady-state specifications
Autonomous Agents and Multi-Agent Systems, ISSN: 1573-7454, Vol: 38, Issue: 1
2024
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
The problem of deriving decision-making policies, subject to some formal specification of behavior, has been well-studied in the control synthesis, reinforcement learning, and planning communities. Such problems are typically framed in the context of a non-deterministic decision process, the non-determinism of which is optimally resolved by the computed policy. In this paper, we explore the derivation of such policies in Markov decision processes (MDPs) subject to two types of formal specifications. First, we consider steady-state specifications that reason about the infinite-frequency behavior of the resulting agent. This behavior corresponds to the frequency with which an agent visits each state as it follows its decision-making policy indefinitely. Second, we examine the infinite-trace behavior of the agent by imposing Linear Temporal Logic (LTL) constraints on the behavior induced by the resulting policy. We present an algorithm to find a deterministic policy satisfying LTL and steady-state constraints by characterizing the solutions as an integer linear program (ILP) and experimentally evaluate our approach. In our experimental results section, we evaluate the proposed ILP using MDPs with stochastic and deterministic transitions.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know