Selective measures in data envelopment analysis
Annals of Operations Research, ISSN: 1572-9338, Vol: 226, Issue: 1, Page: 623-642
2015
- 35Citations
- 44Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Data envelopment analysis (DEA) is a data based mathematical approach, which handles large numbers of variables, constraints, and data. Hence, data play an important and critical role in DEA. Given a set of decision making units (DMUs) and identified inputs and outputs (performance measures), DEA evaluates each DMU in comparison with all DMUs. According to some statistical and empirical rules, a balance between the number of DMUs and the number of performance measures should exist. However, in some situations the number of performance measures is relatively large in comparison with the number of DMUs. These cases lead us to choose some inputs and outputs in a way that produces acceptable results. We refer to these selected inputs and outputs as selective measures. This paper presents an approach toward a large number of inputs and outputs. Individual DMU and aggregate models are recommended and expanded separately for developing the idea of selective measures. The practical aspect of the new approach is illustrated by two real data set applications.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know