A novel advanced grey incidence analysis for investigating the level of resilience in supply chains
Annals of Operations Research, ISSN: 1572-9338, Vol: 308, Issue: 1-2, Page: 441-490
2022
- 37Citations
- 142Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: Supply chain risk management embroils quite a lot of situations of managerial decision-making under uncertainties. As contemporary supply chains are intricate networks exposed to ample vulnerabilities, a resilient supply chain with inbuilt capabilities for responding to unanticipated events can assume significance. This paper proposes a decision support model for managers for knowing, measuring and improving the level of resilience in manufacturing supply chains. A novel computational methodology involving the incidence analysis and grey theory is proposed in this study. Using the methodology of advanced analysis of grey incidences, the level of resilience of supply chains can be measured. Various strategies and attributes imparting resilience, particularly relevant to the manufacturing industry are analyzed in this research. A framework considering five strategies and twenty-three attributes contributing to supply chain resilience is also constructed. And a case evaluation has been conducted to implementing the proposed methodology. Managers can ascertain their supply chain resilience capabilities by means of synthetic resilience index, as recommended in this study. From the measures of resilience for the bygone period, top management can assess and improve the resilience capabilities of their supply chain, by taking strategic level decisions. Graphic abstract: [Figure not available: see fulltext.]
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know