Intermittent demand forecasting with transformer neural networks
Annals of Operations Research, ISSN: 1572-9338, Vol: 339, Issue: 1-2, Page: 1051-1072
2024
- 4Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Intermittent demand forecasting is an important yet challenging task in many organizations. While prior research has been focused on traditional methods such as Croston’s method and its variants, limited research has been conducted using advanced machine learning or deep learning methods. In this study, we introduce Transformer, a recently developed deep learning approach, to forecast intermittent demand. Its effectiveness is empirically tested with a dataset of 925 intermittent demand items from an airline spare parts provider and compared with that of two traditional methods such as Croston’s and the Syntetos–Boylan approximation as well as several popular neural network architectures including feedforward neural networks, recurrent neural networks, and long short-term memory. Our results based on six different forecasting performance measures show that Transformer performs very well against other methods in a variety of settings. We also examine how data sparsity impacts model performance and find that different models perform similarly when sparsity is low. Although the performance of all models generally gets worse as the sparsity level increases, the advantage of Transformer over other models increases with sparsity.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know