Effect of magnetic field on poroelastic bone model for internal remodeling
Applied Mathematics and Mechanics (English Edition), ISSN: 0253-4827, Vol: 34, Issue: 7, Page: 889-906
2013
- 14Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper studies the effects of the magnetic field and the porosity on a poroelastic bone model for internal remodeling. The solution of the internal bone remodeling process induced by a magnetic field is presented. The bone is treated as a poroelastic material by Biot's formulation. Based on the theory of small strain adaptive elasticity, a theoretical approach for the internal remodeling is proposed. The components of the stresses, the displacements, and the rate of internal remodeling are obtained in analytical forms, and the numerical results are represented graphically. The results indicate that the effects of the magnetic field and the porosity on the rate of internal remodeling in bone are very pronounced. © 2013 Shanghai University and Springer-Verlag Berlin Heidelberg.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know