GRU-based capsule network with an improved loss for personnel performance prediction
Applied Intelligence, ISSN: 1573-7497, Vol: 51, Issue: 7, Page: 4730-4743
2021
- 9Citations
- 26Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Personnel performance is a key factor to maintain core competitive advantages. Thus, predicting personnel future performance is a significant research domain in human resource management (HRM). In this paper, to improve the performance, we propose a novel method for personnel performance prediction which helps decision-makers select high-potential talents. Specifically, for modeling the personnel performance, we first devise a GRU model to learn sequential information from personnel performance data without any expertise. Then, to better cluster the features, we exploit capsule network. Finally, to precisely make predictions, we further design one strategy, i.e., an improved loss function, and embed it into the capsule network. In addition, by introducing this strategy, our proposed model can well deal with the imbalanced data problem. Extensive experiments on real-world data clearly demonstrate the effectiveness of the proposed approach.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know