Multi-label learning with Relief-based label-specific feature selection
Applied Intelligence, ISSN: 1573-7497, Vol: 53, Issue: 15, Page: 18517-18530
2023
- 8Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Multi-label learning is an emerging paradigm exploiting samples with rich semantics. As an effective solution to multi-label learning, the strategy of label-specific features (LIFT) has been widely applied. Technically, such strategy feeds the tailored features to learning model instead of the original ones. However, tailoring features for each label may cause redundancy or irrelevance in feature space, thereby deteriorating the learning performance. To alleviate such a problem, a novel multi-label classification method named Relief-LIFT is proposed in this study. Relief-LIFT firstly leverages LIFT to generate the toiled features, and then adjusts Relief to select informative features from those toiled ones for the classification model. Experimental results on 12 real-world multi-label data sets demonstrate that, our proposed Relief-LIFT can achieve better performance as compared with other well-established multi-label classification methods.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know