A novel immune detector training method for network anomaly detection
Applied Intelligence, ISSN: 1573-7497, Vol: 54, Issue: 2, Page: 2009-2030
2024
- 5Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The artificial immune system and network anomaly detection system are developed with common goals and principles considered. Moreover, artificial immune-based network anomaly detection can adaptively learn and dynamically detect threats. However, existing immune recognition algorithms suffer from the curse of dimensionality, hole problems, and detector inefficiency tolerance. In this paper, we proposed a novel immune detector training mechanism for network anomaly detection. First, a hybrid filter embedded feature selection algorithm is designed to comprehensively evaluate features and select the optimal subset. Then, candidate detectors are generated based on self antigens, and the nonself region is represented using complementary space to circumvent the hole problem. Finally, considering the training efficiency during the evolution of the candidate detectors, an antigen clustering feature tree is constructed to rapidly index the tolerance objects. Furthermore, the algorithm considers the effect of the collaboration of multiple mature detectors on candidate detectors, and a Monte Carlo-based coverage estimation algorithm is designed to achieve more accurate and fine-grained maturation tolerance of candidate detectors. The theoretical analysis shows that the time complexity of our algorithm is significantly reduced. The experimental results show that our algorithm not only improves the detection accuracy but also reduces the time cost of detector training.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know