Origin and Formation Mechanisms of Potassium- and Lithium-Rich Brines in the Triassic Strata of Northeastern Sichuan Basin, South China
Aquatic Geochemistry, ISSN: 1573-1421, Vol: 30, Issue: 3, Page: 163-178
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The northeastern Sichuan Basin hosts deep brines with unusually high concentrations of potassium (K) and lithium (Li). This study examines deep brines abundant in K and Li in northeastern Sichuan Basin. Brine samples from Well ZK601 underwent comprehensive analysis for major elements, trace elements, and Sr isotopes. Lithium content in core samples correlated with regional brine reservoir features. Brine samples showed a salinity range of 354.6–363 g/L, with varying contents of Na (101–106 g/L), K (28.92–34.84 g/L), Cl (202.1–206 g/L), Br (2110–2980 mg/L), and Li (169.5–204.5 mg/L). The Sr/Sr ratio in brine was 0.708324. Li notably increased post-green bean rock deposition in 71 core samples. The ratios are as follows: Br × 10/Cl is 10.24, K × 10/Cl is 169.13, nNa/nCl is 0.74, and SO × 10/Cl is 0.49. These brines likely originated from ancient seawater, evolving via rock interactions during burial, notably enriching K and Li through gypsum dehydration. Geochemical traits and Sr isotopes affirm ancient seawater origin, stressing continual water–rock interactions. The volcanic activity contributed significantly to lithium enrichment, consolidated during later burial stages. Brine reservoirs, mostly in formations like dolomite within the Jialingjiang Formation, associate closely with fractured zones. Structural traps define distribution, while fault systems govern enrichment. Accumulation mainly occurs in fractured zones, reflecting a mineralization model of seawater origins, metamorphism, filtration, and structural enrichment. In summary, our model outlines a transformation from seawater origins to structural controls enriching K and Li in deep brines in northeastern Sichuan Basin.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know