A survey on robustness attacks for deep code models
Automated Software Engineering, ISSN: 1573-7535, Vol: 31, Issue: 2
2024
- 3Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
With the widespread application of deep learning in software engineering, deep code models have played an important role in improving code quality and development efficiency, promoting the intelligence and industrialization of software engineering. In recent years, the fragility of deep code models has been constantly exposed, with various attack methods emerging against deep code models and robustness attacks being a new attack paradigm. Adversarial samples after model deployment are generated to evade the predictions of deep code models, making robustness attacks a hot research direction. Therefore, to provide a comprehensive survey of robustness attacks on deep code models and their implications, this paper comprehensively analyzes the robustness attack methods in deep code models. Firstly, it analyzes the differences between robustness attacks and other attack paradigms, defines basic attack methods and processes, and then summarizes robustness attacks’ threat model, evaluation metrics, attack settings, etc. Furthermore, existing attack methods are classified from multiple dimensions, such as attacker knowledge and attack scenarios. In addition, common tasks, datasets, and deep learning models in robustness attack research are also summarized, introducing beneficial applications of robustness attacks in data augmentation, adversarial training, etc., and finally, looking forward to future key research directions.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know