Probabilistic seismic hazard assessment for sliding displacement of slopes: an application in Turkey
Bulletin of Earthquake Engineering, ISSN: 1573-1456, Vol: 15, Issue: 7, Page: 2737-2760
2017
- 10Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Earthquake-induced slope instability is one of the major sources of earthquake hazards in near fault regions. Simplified tools such as Newmark’s sliding block (NSB) analysis are widely used to estimate the sliding displacement of slopes during earthquake shaking. Additionally, empirical models for predicting NSB displacement using single or multiple ground motion intensity measures based on global (e.g. NGA-W1 database, Chiou et al. 2008) or regional datasets are available. The objective of this study is to evaluate the compatibility of candidate NSB displacement prediction models for the probabilistic seismic hazard assessment (PSHA) applications in Turkey using a comprehensive dataset of ground motions recorded during the earthquakes occurred in Turkey. Then, application of the most suitable NSB displacement prediction model in the vector-valued PSHA framework is demonstrated using the seismic source characterization models developed for Bolu-Gerede Region (in northwest Turkey). The results are presented in terms of the NSB displacement hazard curves and the hazard curves are evaluated for the influence of parameter selection (site conditions, yield acceleration, distance to the fault plane, and other seismic source model parameters) on the final hazard output.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85007420476&origin=inward; http://dx.doi.org/10.1007/s10518-016-0079-1; http://link.springer.com/10.1007/s10518-016-0079-1; http://link.springer.com/content/pdf/10.1007/s10518-016-0079-1.pdf; http://link.springer.com/article/10.1007/s10518-016-0079-1/fulltext.html; https://dx.doi.org/10.1007/s10518-016-0079-1; https://link.springer.com/article/10.1007/s10518-016-0079-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know