A simplified approach to derive Cleland model for enzymatic reactions
Biotechnology Letters, ISSN: 0141-5492, Vol: 35, Issue: 5, Page: 785-789
2013
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures9
- Readers9
Article Description
Metabolic modeling can suggest which is the key enzyme activity that needs to be controlled or its activity enhanced for the required production of a metabolite in a pathway. It also helps to find possible drug targets (enzymes to be inhibited). In metabolic modeling, knowing the kinetics of the enzymes involved in a pathway is mandatory. Most enzymatic reactions involve multi-substrates and follow an ordered sequential or ping-pong mechanism. The kinetic parameters involved in the model are obtained by fitting experimental data using a model based on the mechanism. The Cleland model has been used for some years. The grouping of parameters, such as dissociation constant and Michaelis-Menten constant, makes the strategy meaningful and hence the Cleland model is still in use. Although other alternate methods, e. g., the King-Altman method, are available, derivation by determinants can be used to derive a rate expression for the sequential or ping-pong mechanism, they are tedious. Hence, a meaningful modification is suggested in this communication for deriving the enzyme mechanism which is based on Thilakavathi et al. (Biotech Lett 28:1889-1894, 2006) to obtain the Cleland model in an easier way. © 2013 Springer Science+Business Media Dordrecht.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84876978793&origin=inward; http://dx.doi.org/10.1007/s10529-013-1159-9; http://www.ncbi.nlm.nih.gov/pubmed/23455878; http://link.springer.com/10.1007/s10529-013-1159-9; https://dx.doi.org/10.1007/s10529-013-1159-9; https://link.springer.com/article/10.1007/s10529-013-1159-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know