Species richness coincidence: Conservation strategies based on predictive modelling
Biodiversity and Conservation, ISSN: 0960-3115, Vol: 14, Issue: 6, Page: 1345-1364
2005
- 55Citations
- 219Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The present-day geographic distribution of individual species of five taxonomic groups (plants, dragonflies, butterflies, herpetofauna and breeding birds) is relatively well-known on a small scale (5 × 5 km squares) in Flanders (north Belgium). These data allow identification of areas with a high diversity within each of the species groups. However, differences in mapping intensity and coverage hamper straightforward comparisons of species-rich areas among the taxonomic groups. To overcome this problem, we modelled the species richness of each taxonomic group separately using various environmental characteristics as predictor variables (area of different land use types, biotope diversity, topographic and climatic features). We applied forward stepwise multiple regression to build the models, using a subset of well-surveyed squares. A separate set of equally well-surveyed squares was used to test the predictions of the models. The coincidence of geographic areas with high predicted species richness was remarkably high among the four faunal groups, but much lower between plants and each of the four faunal groups. Thus, the four investigated faunal groups can be used as relatively good indicator taxa for one another in Flanders, at least for their within-group species diversity. A mean predicted species diversity per mapping square was also estimated by averaging the standardised predicted species richness over the five taxonomic groups, to locate the regions that were predicted as being the most species-rich for all five investigated taxonomic groups together. Finally, the applicability of predictive modelling in nature conservation policy both in Flanders and in other regions is discussed. © Springer 2005.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=21144432442&origin=inward; http://dx.doi.org/10.1007/s10531-004-9662-x; http://link.springer.com/10.1007/s10531-004-9662-x; https://dx.doi.org/10.1007/s10531-004-9662-x; https://link.springer.com/article/10.1007/s10531-004-9662-x; http://www.springerlink.com/index/10.1007/s10531-004-9662-x; http://www.springerlink.com/index/pdf/10.1007/s10531-004-9662-x
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know