The climate benefit of sequestration in soils for warming mitigation
Biogeochemistry, ISSN: 1573-515X, Vol: 161, Issue: 1, Page: 71-84
2022
- 12Citations
- 49Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Soils are an enticing reservoir for nature-based climate solutions, but long timescales are required to store amounts of C of relevance to mitigate warming acknowledging its impermanence. Scientific clarity on the controlling factors in soil C persistence should help to disambiguate debates related to permanence in the climate policy domain. However, another contributing factor that is lacking in this debate is a way to compute the climate benefits of C in terrestrial ecosystems over time in the same units as greenhouse gas emissions. We use a case study approach here to demonstrate the use of the metrics of carbon sequestration (CS) and climate benefit of sequestration (CBS) with the aim of assessing the contribution of simultaneous emissions and uptake on radiative forcing. We show how this new computational framework quantifies the climate benefit achieved in two different agricultural systems, one a managed tropical perennial grass system in Hawaiʻi, USA and the other a boreal (cold-temperate, semi-humid) agricultural soil from long term amendment trials in Sweden. Using a set of computations, we show how C inputs and persistence interact to produce different levels of radiative forcing at relevant time frames, which could greatly help to clarify issues of carbon permanence discussed in climate policy. Temporary soil C storage could help to decrease peak warming provided that ambitious emission reductions are part of the portfolio of solutions; the CS and CBS framework gives us a way to quantify it based on biogeochemical understanding of soil C persistence.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know