Design of optimal electrode geometries for dielectrophoresis using fitness based on simplified particle trajectories
Biomedical Microdevices, ISSN: 1572-8781, Vol: 18, Issue: 4, Page: 69
2016
- 6Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Dielectrophoretic (DEP) forces applied to microscopic particles are highly dependent on the gradient of the electric field experienced by the particles. These DEP forces can be used to selectively capture and remove cells from fluid flows within a micro-channel above the DEP electrodes. Modification of the geometry of the electrodes that generate the electric field is the main approach available to increase the electric field gradient over a wide area, and hence increase the applied dielectrophoretic force. Optimized DEP forces increase attraction or repulsion of target cells from the electrode surface, enhancing the efficacy of electrodes for cell sorting applications. In this paper, we present a design approach, using genetic optimization techniques, to develop novel electrode geometries that effectively capture target particles. The performance of candidate electrode designs is evaluated by calculating simplified particle trajectories.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84978818558&origin=inward; http://dx.doi.org/10.1007/s10544-016-0085-8; http://www.ncbi.nlm.nih.gov/pubmed/27432322; http://link.springer.com/10.1007/s10544-016-0085-8; https://dx.doi.org/10.1007/s10544-016-0085-8; https://link.springer.com/article/10.1007/s10544-016-0085-8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know