Development of 3D printed fibrillar collagen scaffold for tissue engineering
Biomedical Microdevices, ISSN: 1572-8781, Vol: 20, Issue: 2, Page: 26
2018
- 105Citations
- 247Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations105
- Citation Indexes103
- 103
- CrossRef98
- Patent Family Citations2
- Patent Families2
- Captures247
- Readers247
- 247
Article Description
Collagen is widely used in tissue engineering because it can be extracted in large quantities, and has excellent biocompatibility, good biodegradability, and weak antigenicity. In the present study, we isolated printable collagen from bovine Achilles tendon and examined the purity of the isolated collagen using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The bands obtained corresponded to α, α and β chains with little contamination from other small proteins. Furthermore, rheological measurements of collagen dispersions (60 mg per ml of PBS) at pH 7 revealed values of viscosity of 35.62 ± 1.42 Pa s at shear rate of 10 s − 1 and a shear thinning behavior. Collagen gels and solutions can be used for building scaffolds by three-dimensional (3D) printing. After designing and fabricating a low-cost 3D printer we assayed the collagen printing and obtaining 3D printed scaffolds of collagen at pH 7. The porosity of the scaffold was 90.22% ± 0.88% and the swelling ratio was 1437% ± 146%. The microstructure of the scaffolds was studied using scanning electron microscopy, and a porous mesh of fibrillar collagen was observed. In addition, the 3D printed collagen scaffold was not cytotoxic with cell viability higher than 70% using Vero and NIH 3 T3 cells. In vitro evaluation using both cells lines demonstrated that the collagen scaffolds had the ability to support cell attachment and proliferation. Also a fibrillar collagen mesh was observed after two weeks of culture at 37 °C. Overall, these results are promising since they show the capability of the presented protocol to obtain printable fibrillar collagen at pH 7 and the potential of the printing technique for building low-cost biocompatible 3D plotted structures which maintained the fibrillar collagen structure after incubation in culture media without using additional strategies as crosslinking.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85042761535&origin=inward; http://dx.doi.org/10.1007/s10544-018-0270-z; http://www.ncbi.nlm.nih.gov/pubmed/29484567; http://link.springer.com/10.1007/s10544-018-0270-z; https://dx.doi.org/10.1007/s10544-018-0270-z; https://link.springer.com/article/10.1007/s10544-018-0270-z
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know