On Some Asymptotic Properties of Solutions to Biharmonic Equations
Cybernetics and Systems Analysis, ISSN: 1573-8337, Vol: 58, Issue: 2, Page: 251-258
2022
- 31Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations31
- Citation Indexes31
- 31
Article Description
The author considers the application of the approximation theory methods to the principles of optimality in the decision-making theory. In finding optimal solutions, the risk function often has rather complex structure for studying its properties, which makes it necessary to approximate the risk function to another function with simple and clear characteristics. In this regard, the asymptotic properties of the solutions of biharmonic equations as approximate functions are investigated. Complete asymptotic expansions of the upper limits of deviations of the Sobolev class functions W (the set that the risk functions in decision-making optimization belong to) from operators that are solutions of biharmonic equations with certain boundary conditions are obtained. The expansions allow us to find the Kolmogorov–Nikolsky constants of arbitrarily high degree of smallness, which makes it possible to estimate the approximation error when solving optimization problems with arbitrary accuracy. It is mentioned that the biharmonic equations can be used to efficiently generate mathematical models of natural and social phenomena.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know