Calix[4]pyrrole Stabilized PdNPs as an Efficient Heterogeneous Catalyst for Enhanced Degradation of Water-Soluble Carcinogenic Azo Dyes
Catalysis Letters, ISSN: 1572-879X, Vol: 151, Issue: 2, Page: 548-558
2021
- 12Citations
- 18Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
One-pot synthesis of palladium nanoparticles (PdNPs) has been achieved using calix[4]pyrrole hydrazide (MCPTH) as both reducing as well as capping agent. The synthetic procedure involves the use of environmentally benign water as solvent media. MCPTH-PdNPs have been characterized by using various analytical techniques. Transmission electron microscope analysis visualized the presence of well-dispersed and spherical Pd nanoparticles with an average dimension of 3–4 nm. Powder X-ray diffraction pattern portrayed the presence of face-centered cubic crystal structured PdNPs. A zeta potential value of − 26.2 mV suggests better stability of the nanoparticles. The heterogeneous catalytic activity of MCPTH-PdNPs was studied by probing the reduction of two carcinogenic azo dyes, namely, methylene blue and methyl orange in the presence of sodium borohydride. A remedial pathway for the process of dye degradation is proposed where the catalytic activity of Pd is faciled by the transfer of electrons from MCPTH to the metal centre. The mechanism for dye degradation is further substantiated by Density Functional Theory (DFT) calculations. The results of this work provide not only insight into fabrication of nanoparticles using calixarene platforms but also open new vistas to environmental remediation. Graphic Abstract: [Figure not available: see fulltext.]
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know