An Advanced Quaternary Composite for Efficient Water Splitting
Catalysis Letters, ISSN: 1572-879X, Vol: 154, Issue: 2, Page: 627-633
2024
- 4Citations
- 2Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Findings from Qatar University Reveals New Findings on Nanoparticles (An Advanced Quaternary Composite for Efficient Water Splitting)
2023 MAY 24 (NewsRx) -- By a News Reporter-Staff News Editor at Middle East Daily -- A new study on Nanotechnology - Nanoparticles is now
Article Description
Electrochemical water splitting is a promising pathway for effective hydrogen (H) evolution in energy conversion and storage, with electrocatalysis playing a key role. Developing efficient, cost-effective and stable catalysts or electrocatalysts is critical for hydrogen evolution from water splitting. Herein, we evaluated a graphene-modified nanoparticle catalyst for hydrogen evolution reaction (HER). The electrocatalytic H production rate of reduced graphene oxide-titanium oxide-nickel oxide-zinc oxide (rGO–TiO–NiO–ZnO) is high and exceeds that obtained on components alone. This improvement is due to the presence of rGO as an electron collector and transporter. Moreover, a current density of 10 mA/cm was recorded at a reduced working potential of 365 mV for the nanocomposite. The electronic coupling effect between the nanoparticle components at the interface causes the nanoparticle's hydrogen evolution reaction catalytic activity. Graphical Abstract: [Figure not available: see fulltext.]
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know