Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis
Cellulose, ISSN: 0969-0239, Vol: 20, Issue: 2, Page: 785-794
2013
- 242Citations
- 294Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The conditions required for the accurate measurement of the sulfur content of cellulose nanocrystals (CNCs) by conductometric titration are discussed. CNCs from sulfuric acid hydrolysis are electrostatically stabilized in aqueous suspension due to the introduction of charged sulfate ester groups onto the surface of the crystallites during reaction. The sulfur content thus largely reflects the surface charge of the crystals, and is crucial to the characterization and understanding of material properties. Conductometric titration is commonly used to quantify the sulfur content of CNCs, however, the exhaustive removal of free acid by dialysis and the necessity, type, quantity and duration of ion-exchange resin treatments are not always consistent. Here we explore the standard conditions of dialysis, ion-exchange, and the reproducibility of titration results. Extensive dialysis is found to be effective in the removal of free acid, but similar results are also achieved in shorter times and with less water using membrane ultrafiltration. It is also shown that the conditions of ion-exchange most commonly employed in the literature can lead to inaccurate sulfur contents. Finally, good agreement is obtained between the sulfur contents of different CNC batches prepared using the same hydrolysis conditions, and from titration and elemental analysis when thoroughly purified, well-dispersed samples, and appropriate resin conditions are used. © 2013 Springer Science+Business Media Dordrecht.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84874521440&origin=inward; http://dx.doi.org/10.1007/s10570-013-9871-0; http://link.springer.com/10.1007/s10570-013-9871-0; http://link.springer.com/content/pdf/10.1007/s10570-013-9871-0; http://link.springer.com/content/pdf/10.1007/s10570-013-9871-0.pdf; http://link.springer.com/article/10.1007/s10570-013-9871-0/fulltext.html; https://dx.doi.org/10.1007/s10570-013-9871-0; https://link.springer.com/article/10.1007/s10570-013-9871-0
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know