Cellulose nanocrystal structure in the presence of salts
Cellulose, ISSN: 1572-882X, Vol: 26, Issue: 18, Page: 9387-9401
2019
- 35Citations
- 43Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: Aggregation and gelation of cellulose nanocrystals (CNCs) induced by magnesium chloride (MgCl) are investigated as a function of CNC and MgCl concentrations. Transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) are employed to study the effect of ionic strength and CNC concentration on the extent of aggregation and structure of the CNC network. The location of CNC particles is traced with Fluorescent brightener 28 staining agent. The results show that the addition of different amounts of MgCl causes a cluster formation of CNCs with different fractal dimensions, confirmed by TEM. The fractal dimension of CNC clusters varied from approximately 1.56 ± 0.08 to 1.98 ± 0.01 as the MgCl/CNC concentration ratio is increased from 0.17 to 0.42. We use the MgCl/CNC concentration ratio as a global parameter to correlate the results of different measurements and imaging data, including TEM, zeta potential and CLSM. Furthermore, we conduct molecular dynamic simulations to quantitatively examine different CNC behavior in MgCl salt–CNC suspension. The results on the potential of mean force (PMF) indicate that the PMF of different ions concentration gravitates to zero where the distance between CNCs is increased from 3.1 nm to 3.5 nm. However, adding ions to the system changes the energy of the system and leads to a different behavior of CNC interactions. Graphic abstract: [Figure not available: see fulltext.].
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know