The potential neuroprotection mechanism of GDNF in the 6-ohda-induced cellular models of Parkinson's disease
Cellular and Molecular Neurobiology, ISSN: 0272-4340, Vol: 33, Issue: 7, Page: 907-919
2013
- 16Citations
- 34Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- 16
- CrossRef11
- Captures34
- Readers34
- 34
Article Description
The glial cell line-derived neurotrophic factor (GDNF) potential as a therapeutic agent for the treatment of Parkinson's Disease (PD) has been extensively explored. However, the mechanism of the GDNF neuroprotective effects is still unclear. In this study, the neuroprotective mechanism of the GDNF in the PD cellular models, which was obtained by the 6-hydroxydopamine (6-OHDA)-induced dopaminergic (DA) cell line MN9D damage was investigated by microarray. Interestingly, 54 constitutively increased or decreased genes were detected, 17 of which have not been reported previously. The expression of 5 up-regulated and 5 down-regulated genes which displayed the most obvious changes compared to the no GDNF treatment cells and was previously proven to be related to cell survival was validated by real-time PCR and western blot. Moreover, the up-regulated gene Ager and down-regulated gene Ccnl2 which were related to the PI-3K/Akt signaling pathway, but not researched in the neuron-cells, were investigated by overexpression and RNA interference. Overexpression of Ager or knockdown the expression of Ccnl2 decreased the damage to MN9D cells caused by 6-OHDA and reduced their apoptosis. All these results suggested that the protective effects of the GDNF on the 6-OHDA damaged MN9D cells could be understood by enhancing the expression of the apoptosis inhibiting genes and decreasing the expression of the apoptosis promoting genes. Thus, this study might provide a number of specific candidates and potential targets to investigate the protective mechanism of GDNF in DA neurons. © 2013 Springer Science+Business Media New York.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84885183140&origin=inward; http://dx.doi.org/10.1007/s10571-013-9957-0; http://www.ncbi.nlm.nih.gov/pubmed/23846419; http://link.springer.com/10.1007/s10571-013-9957-0; https://dx.doi.org/10.1007/s10571-013-9957-0; https://link.springer.com/article/10.1007/s10571-013-9957-0
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know