Evaluating the performance of RegCM4.0 climate model for climate change impact assessment on wheat and rice crop in diverse agro-climatic zones of Uttar Pradesh, India
Climatic Change, ISSN: 1573-1480, Vol: 149, Issue: 3-4, Page: 503-515
2018
- 32Citations
- 69Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The paper aims to explore the biasness in the RegCM climate model outputs for diverse agro-climatic zones of Uttar Pradesh, India, with emphasis on wheat (Rabi growing season) and rice (Kharif growing season) yields with and without bias correction using quantile mapping approach for the baseline period of 1971–2000. The result shows that RCM highly underestimated the maximum and minimum temperature. There exists a bias towards lower precipitation in annual and Kharif and higher in Rabi along with strikingly low intense warm (maximum temperature > 45 °C and 40 °C) and high cold events (maximum temperature < 20 °C and minimum temperature < 5 °C) in the RCM simulation and biased towards low extreme rainfall > 50 mm/day. Bias correction through quantile mapping approach, however, showed excellent agreement for annual and seasonal maximum and minimum temperature and satisfactory for extreme temperatures but drastically failed to correct rainfall. The study also quantified the biasness in the simulated potential, irrigated, and rainfed wheat and rice yield using DSSAT (Decision Support System for Agro-technology Transfer) crop model by employing observed, RCM baseline, and RCM baseline bias-corrected weather data. The grain yields of RCM-simulated wheat and rice were high while the bias-corrected yield has shown good agreement with corresponding observed yield. Future research must account for the development of more reliable RCM models and explicitly bias correction method in specific to complement future analysis.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know