Can global models provide insights into regional mitigation strategies? A diagnostic model comparison study of bioenergy in Brazil
Climatic Change, ISSN: 1573-1480, Vol: 170, Issue: 1-2
2022
- 17Citations
- 36Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Spread in climate policy scenarios unravelled
Nature, Published online: 13 December 2023; doi:10.1038/s41586-023-06738-6 A Sobol attribution analysis unveils the roles of mitigation targets, model differences and scenario assumptions in shaping climate policy scenario outcomes.
Article Description
The usefulness of global integrated assessment model (IAM) results for policy recommendation in specific regions has not been fully assessed to date. This study presents the variation in results across models for a given region, and what might be behind this variation and how model assumptions and structures drive results. Understanding what drives the differences across model results is important for national policy relevance of global scenarios. We focus on the use of bioenergy in Brazil, a country expected to play an important role in future bioenergy production. We use results of the Stanford University Energy Modeling Forum’s 33rd Study (EMF-33) model comparison exercise to compare and assess projections of Brazil’s bioenergy pathways under climate mitigation scenarios to explore how 10 global IAMs compare to recent trends in the country. We find that, in their current form, global IAMs have limited potential to supply robust insights into regional mitigation strategies. Our results suggest fertile ground for a new research agenda to improve regional representation in global IAMs with improved spatial and technological resolutions.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know