Causal network construction based on KICA-ECCM for root cause diagnosis of industrial processes
Cluster Computing, ISSN: 1573-7543, Vol: 27, Issue: 9, Page: 11891-11909
2024
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Root cause diagnosis is able to find the propagation path of faults timely when the fault occurs. Therefore, it is of key significance in the maintenance and fault diagnosis of industrial systems. A commonly used method for root cause diagnosis is causal analysis method. In this work, a causal analysis method Extended Convergent Cross Mapping (ECCM) algorithm is used for root cause diagnosis of industry, however, it has difficulties in dealing with large amounts of steady state data and obtaining accurate propagation paths. Therefore, a causal analysis method based on Kernel Independent Component Analysis (KICA) and ECCM is proposed in this study to deal with the above problems. First, the KICA algorithm is used to detect faults to get the transition process data. Second, the ECCM algorithm is used to construct causal relationship among variables based on the transition process data to construct the fault propagation path diagram. Finally, the effectiveness of the proposed KICA-ECCM algorithm is tested by using the Tennessee Eastman Process and Industrial Process Control Test Facility platform. Compared with the ECCM and GC algorithm, the KICA-ECCM algorithm performs better in terms of accuracy and efficiency.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know