Generalization of the optical theorem to the case of excitation of a local obstacle by a multipole
Computational Mathematics and Modeling, ISSN: 1573-837X, Vol: 28, Issue: 2, Page: 158-163
2017
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures8
- Readers8
Article Description
The optical theorem is generalized to the case of excitation of a local body by a multipole. To compute the extinction cross-section, it is sufficient to find the derivatives of the scattered field at the single point where the multipole is located. The relationship obtained in this article makes it possible to test software modules developed for studying wave diffraction on transparent bodies.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85015686986&origin=inward; http://dx.doi.org/10.1007/s10598-017-9354-5; http://link.springer.com/10.1007/s10598-017-9354-5; http://link.springer.com/content/pdf/10.1007/s10598-017-9354-5.pdf; http://link.springer.com/article/10.1007/s10598-017-9354-5/fulltext.html; https://dx.doi.org/10.1007/s10598-017-9354-5; https://link.springer.com/article/10.1007/s10598-017-9354-5
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know