Treatment efficacy of algae-based sewage treatment plants
Environmental Monitoring and Assessment, ISSN: 0167-6369, Vol: 185, Issue: 9, Page: 7145-7164
2013
- 82Citations
- 161Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations82
- Citation Indexes82
- 82
- CrossRef32
- Captures161
- Readers161
- 161
Article Description
Lagoons have been traditionally used in India for decentralized treatment of domestic sewage. These are cost effective as they depend mainly on natural processes without any external energy inputs. This study focuses on the treatment efficiency of algae-based sewage treatment plant (STP) of 67.65 million liters per day (MLD) capacity considering the characteristics of domestic wastewater (sewage) and functioning of the treatment plant, while attempting to understand the role of algae in the treatment. STP performance was assessed by diurnal as well as periodic investigations of key water quality parameters and algal biota. STP with a residence time of 14.3 days perform moderately, which is evident from the removal of total chemical oxygen demand (COD) (60 %), filterable COD (50 %), total biochemical oxygen demand (BOD) (82 %), and filterable BOD (70 %) as sewage travels from the inlet to the outlet. Furthermore, nitrogen content showed sharp variations with total Kjeldahl nitrogen (TKN) removal of 36 %; ammonium N (NH-N) removal efficiency of 18 %, nitrate (NO-N) removal efficiency of 22 %, and nitrite (NO-N) removal efficiency of 57.8 %. The predominant algae are euglenoides (in facultative lagoons) and chlorophycean members (maturation ponds). The drastic decrease of particulates and suspended matter highlights heterotrophy of euglenoides in removing particulates. © 2013 Springer Science+Business Media Dordrecht.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84881162486&origin=inward; http://dx.doi.org/10.1007/s10661-013-3090-x; http://www.ncbi.nlm.nih.gov/pubmed/23404546; http://link.springer.com/10.1007/s10661-013-3090-x; https://dx.doi.org/10.1007/s10661-013-3090-x; https://link.springer.com/article/10.1007/s10661-013-3090-x
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know