Mitigating potential of Melissa officinale against As-induced cytotoxicity and transcriptional alterations of Hsp70 and Hsp27 in fish, Channa punctatus (Bloch)
Environmental Monitoring and Assessment, ISSN: 1573-2959, Vol: 189, Issue: 7, Page: 306
2017
- 18Citations
- 39Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations18
- Citation Indexes18
- 18
- CrossRef10
- Captures39
- Readers39
- 39
Article Description
The mitigating potential of Melissa officinale (MO) (Lamiaceae) against arsenite (As)-induced oxidative stress, cytogenotoxicity, and expression of stress genes in fish, Channa punctatus (Bloch), teleost, was explored. After confirming the composition of MO extract, caffeic acid (0.96%), hesperidin (1.73%), naringenin (7.70%), lutenolin (3.29%), kaempferol (11.46%) and hesperetin (6.24%), by HPLC-PDA analysis, the experiment was set up in six groups (G1–G6), each containing 10 specimens. Blood, muscle, gills and liver tissues of control and treated fishes were excised at an interval of 24 till 96 h. Ameliorative potential of MO was confirmed by satisfactory restoration of altered activities of malondialdehyde, hydrogen peroxide, superoxide dismutase, catalase, glutathione peroxidise, glutathione reductase, reduced glutathione and ascorbate peroxidase in G4, G5 and G6, co-exposed with 96 h-LC/10 As with MO. A significant (p < 0.05) recovery in the frequencies of cytogenotoxic markers, micronuclei, disintegrated nucleus and echinocytes, which were expressed significantly (p < 0.05) in G3 exposed to sub-lethal concentration of ATO alone, was recorded in fish groups (G4, G5 and G6) together treated with 96 h-LC/10 of ATO and 2, 4 and 8 ppm of MO, respectively. Moreover, the expression of Hsp70 gene was downregulated (2.29-fold); whereas, Hsp27 gene was upregulated (1.16-fold) in G6, the group co-exposed with 96 h-LC/10 As with 8 ppm of MO in comparison with G3 (3.11-fold for Hsp70; 0.51-fold for Hsp27) after 96 h of exposure period. Thus, it can be inferred that the MO at its tested concentration can be effectively used to mitigate As generated toxicities in C. punctatus.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85023748331&origin=inward; http://dx.doi.org/10.1007/s10661-017-6002-7; http://www.ncbi.nlm.nih.gov/pubmed/28573351; http://link.springer.com/10.1007/s10661-017-6002-7; https://dx.doi.org/10.1007/s10661-017-6002-7; https://link.springer.com/article/10.1007/s10661-017-6002-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know