Comparison of two methods of neutralization and wet air oxidation for treating wastewater spent caustic produced by oil refineries
Environmental Monitoring and Assessment, ISSN: 1573-2959, Vol: 193, Issue: 12, Page: 854
2021
- 5Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef4
- Captures15
- Readers15
- 15
Article Description
Today, problems of treating wastewater spent caustic produced by refinery units with high toxic compounds and chemical oxygen demand (COD) become concerns of many managers of these industries and environmental experts. Hence, emission without application of treatment methods will have adverse environmental impacts. In this study, two direct acid neutralization (DAN) and wet air oxidation (WAO) processes were selected to treatment the wastewater of the Bandar Abbas oil refinery in southern Iran. The aim was to reduce COD and harmful substances, compare the two methods, optimize processes, and evaluate their performance. Experimental experiments were performed in a reactor system with different input variables related to two different methods. Parameter optimization was performed based on Box-Behnken (BBD) method and Design Expert software. The analysis of the results based on statistical methods and response procedure diagrams was used to evaluate the status of COD changes to the parameters. The best operating conditions of temperature, pressure, residence time, and stoichiometric coefficient of air were 148.269 °C, 15.716 bar, 3.563 h, and 8.415 l/h respectively in WAO with 68% reduction in COD, and for DAN process, temperature, pH, and agitation speed were 30.082 °C, 2.008, and 203.672 rpm, respectively, with 43% reduction in COD. Results of rapid impact assessment matrix (RIAM) showed that WAO process with a higher score is a more environmentally friendly method and DAN process has been considered by experts due to its popularity, ease of testing, less equipment requirements, and lower cost. Graphical abstract: [Figure not available: see fulltext.]
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85120739984&origin=inward; http://dx.doi.org/10.1007/s10661-021-09625-7; http://www.ncbi.nlm.nih.gov/pubmed/34853947; https://link.springer.com/10.1007/s10661-021-09625-7; https://dx.doi.org/10.1007/s10661-021-09625-7; https://link.springer.com/article/10.1007/s10661-021-09625-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know